
PERSISTENCE CURVES: BOUNDING THEIR DISTANCES AND

APPLICATIONS TO CANCER GENOMICS

1. Introduction

Chromosome aberrations have been shown to be associated with cancer. In particular, copy
number gains and losses can often be associated with oncogenes and tumor suppressor genes. Iden-
tifying these genes associated with particular phenotypes can lead to earlier detection of cancers,
an understanding of the likely progression of that type of cancer and potentially genetic therapies.

The classic approach to identifying these important genes is through an association study.
TAaCGH (Topological Analysis of array CGH), primarily differs from classic association stud-
ies in that it uses tools from Topological Data Analysis (TDA) as an intermediate step between the
data and the statistics. The TAaCGH approach was introduced in varying forms through a series
of papers [DCCW+10], [ABD+12],[ABC+15], [ATGB+16], [GUSA20]. In particular, we will focus
here on the version developed in [ABC+15].

This study focused on the 4 main molecular subtypes of breast cancer Luminal A, Luminal B,
basal-like and HER2+. It splits chromosome arms up into contiguous segments and associates the
4 phenotypes with specific regions. This is done by associating to each test and control patient
a curve called a betti-0 curve, taking the average over all test and all control patients and using
the distance between the curves as a test statistic. Here we focus on understanding just how far
two persistence curves can be from each other and upgrading this approach to use other types
of persistence curves such as lifespan curves and persistence landscapes. We compare the results
of both significant regions discovered in the Horlings data set by betti and lifespan curves and
persistence landscapes as well as their results on simulated data.

2. Methods

2.1. Topological Data Analysis. One of the key tools in topological data analysis is persistent
homology. Point clouds are first constructed data, simplicial complexes are built from this point
cloud and the persistent homology of these simplicial complexes then yields topological information
about the shape of the original data. We present a schematic of the process below:

data point cloud simplicial complex Persistent Homology TDA Summary.
γ δ φ ψ

One of the advantages of this framework is its flexibility. The type of point cloud can be adjusted,
such as converting a time series to a sliding window point cloud. The simplicial complex can
be chosen such as the Vietoris-Rips, Čech, alpha or witness complexes. The types of topological
summary can also be chosen such as persistence curves [CL19], persistent landscapes [Bub15] or
persistence images [AEK+17]. By varying these choices one can hone in on specific properties of
the data.

2.1.1. γ Choice of point cloud. Sometimes data comes packaged in a point cloud ready for topo-
logical data analysis techniques to be applied. Other times the data needs to be converted into a
point cloud so that meaningful topological features can be extracted. For example, Harer-Perea in-
troduce a method for detecting periodicity of time series data using persistent homology in [PH15].
In their algorithm they first convert the time series data to what is known as the sliding window
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point cloud, construct a Vietoris-Rips complex from the point cloud and finally apply persistent
homology.

Since then, the sliding window point cloud has been used as a step in TAaCGH to detect
CNAs in cancer patients ([DCCW+10], [ABC+15], [GUSA20], [ATGB+16]). Given a time series
x1, x2, . . . , xn the sliding window point cloud with window size 2 of this time series is

(x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1).

For example, the time series on the left in Figure 1 yields the sliding window point cloud on the
right in Figure 1. Since nearby genes tend to have similar copy numbers, combining the copy

Figure 1. The Sliding Window Mapping

number ratios from adjacent points points into one point makes sense heuristically. Many copy
number aberrations can occur throughout the genome of a patient. In [ATGB+16], it is noted
that 1-dimensional cycles of the sliding window point cloud of copy number data can capture co-
occurring copy number aberrations. This makes both 0 and 1-dimensional persistence of the sliding
window point cloud useful and we study both here.

2.1.2. δ Choice of simplicial complex. The Vietoris-Rips (VR) filtration is frequently used due to its
interpretability and computability. The similarly defined Čech filtration more accurately captures
the topology of the space, but is computationally more expensive. Specifically, the nerve lemma
says that the Čech filtration is homotopy equivalent to the cover which it is the nerve of. It is
still used when the number of data points and their dimensions are small. The VR filtration on a
point cloud P , VR(P, ε), is the simplicial complex on the points in P such that {p1, . . . , pk} ⊆ P
is a simplex in VR(P, ε) if and only if B(pi, ε) ∩B(pj , ε) is nonempty. The Čech filtration, Č(P, ε),

has {p1, . . . , pk} as a simplex if and only if
⋂k
i=1B(pi, ε) is nonempty. It is simple to check that

both of these complexes are actually filtered simplicial complexes, that is, for ε < δ VR(P, ε) is a
subcomplex of VR(P, δ) and Č(P, ε) is a subcomplex of Č(P, δ).

Another filtration that is sometimes used is the alpha complex. Let P = {p1, . . . , pm} ⊆ Rn be
a point cloud. To each point pi ∈ P we associate the Voronoi cell of pi, denoted Vpi which is

Vpi = {x ∈ Rn : d(x, pi) ≤ d(x, pj) for all pj ∈ P},
all of the points in Rn that are closer to p than the other points in the point cloud. Around each
pi ∈ P we define B̃(pi, ε) = B(Pi, ε) ∩ Vpi . The alpha complex on P , denoted α(P, ε) is then
the simplicial complex on the vertices of P such that {p1, . . . , pk} forms a simplex if and only if⋂k
i=1 B̃(pi, ε) is nonempty. The alpha complex is homotopy equivalent to the Čech filtration, but

in low dimensions can be easier to compute.
For this work it is also important to mention a separate interpretation for the VR filtration.

Since a VR filtration is completely determined by its 1-skeleton it can be encoded by a sequence
of graphs Gi on the vertices of a point cloud. The simplicial complex associated to each graph Gi
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is the clique complex of the graph denoted X(Gi). The clique complex of a graph is the simplicial
complex on the vertices of the graph such that a set of vertices {p1, . . . , pk} forms a k − 1 face if
and only if it is a k-clique of the graph.

2.1.3. φ Persistent homology. After a filtered simplicial complex is constructed from the point
cloud, the next step is to extract topological information e.g. the number of connected components
or 1-cycles for each value of ε. To get this information the homology groups Hn of the complex at
each ε are computed. The homology of a simplical complex X is derived from a chain complex.
First an order is established on the vertices of X. Then the nth chain group Cn(X) is the group
of R-linear combinations of simplices of X and each element of Cn(X) is called an n-chain. Given
an n-chain σ = [v0, v1, . . . vn], the boundary homomorphism ∂n : Cn(X) → Cn−1(X) is defined
by ∂n(σ) =

∑n
i=0(−1)i[v0, . . . v̂i . . . vn] and then extending linearly where v̂i means that vertex has

been omitted. The nth homology group of X, Hn(X) is then defined to be ker(∂n)
im(∂n+1

.

Given a filtered simplicial complex Xε with inclusion maps:

Xε0 Xε1 . . . XεN

the functorality of homology takes the sequence of inclusions in the filtration to

Hn(Xε0) Hn(Xε1) . . . Hn(XεN )
ιε0 ιε1 ιεN−1

for each dimension n where ιεi are the maps induced on homology by the inclusions. We now denote
by ιεi→εi+p the composition of the maps induced by the inclusions connecting Xεi to Xεi+p . For
example, ιε1→ε3 = ιε2 ◦ ιε1 . The p-persistent n-dimensional homology group of Xεm is then defined
to be

Hp
n (Xεm) := ιεm→εm+p (Hn (Xεm)) .

The idea behind this definition is that n-dimensional holes that exist at lower filtration values
will be filled in by simplices at higher filtration values. With this viewpoint in mind, for each
element x of homology we can assign a birth-death pair (bx, dx) where bx is the first value of ε
where x appears and dx is the first filtration value where x is trivial. Each of these pairs can be
thought of as an interval [bx, dx) representing the life of this element of homology. The length of
the interval, dx− bx, is known as the persistence or lifespan of x. The n-dimensional Betti number
of Aεi is exactly the number of persistence intervals which contain εi.

Many libraries now exist to compute persistent homology efficiently including Dionysus [Mor12],
Gudhi [The21], Perseus [Nan12], Eirene [HG16], and Ripser [Bau19]. We use the R package TDA
[FKLM14] which makes use of the Gudhi and Dionysus libraries.

2.1.4. ψ Persistence Curves. The number of points in persistence diagrams varies based on the
values of the data. This makes many methods in statistics and machine learning difficult to apply
directly. In order to overcome this issue, the topological information from persistent homology
is often summarized using tools such as persistence curves [CL19], kernel SVM for persistence
[RHBK15], persistence landscapes [Bub15] and persistence images [AEK+17] among others. Here
we focus on persistence curves particularly Betti and lifespan and persistence landscapes. It is
worth noting that, in the 0-dimensional case, one generator could have infinite lifespan if all points
were in a connected component. We therefore choose to consider reduced persistent homology in
this case.

Let C be an n-dimensional persistence diagram, then the nth Betti curve denoted βn(C, t) is
equal to the number of birth-death pairs (b, d) ∈ C such that t ∈ (b, d]. Similarly, the nth lifespan
curve denoted `n(C, t) is equal to the sum of the lifespans of all birth-death pairs (b, d) ∈ C such
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that t ∈ (b, d]. Persistent landscapes are a form of persistence curve introduced in [Bub15]. The
kth persistence landscape of C denoted λ(k, t) is

λ(k, t) = kmaxp([min(t− b, d− t)]+)

where p = (b, d) ∈ D, [c]+ = max(c, 0) and kmax is the kth highest value.
Persistence curves were introduced in [CL19] as a general framework under which previously

studied summaries of persistence diagrams lie. Some of these include the Betti curve, the life
entropy curve [AGDST18] and the k-th landscape [Bub15]. The framework also allows for easy
generation of new summaries including the lifespan curve. Lastly, persistence curves provide a way
to make general arguments about the stability of the curves with respect to the bottleneck distance
between persistence diagrams. Persistence landscapes were shown to be stable in [Bub15].

Theorem 1 from [CL19] provides general bounds on the difference between two persistence curves
under the L1 norm in terms of the bottleneck (W∞) and 1-Wasserstein distances. The stability
with respect to these two distances for many persistence curves is summarized in Table 1 from
[CL19]. This table shows that, in general, the Betti curves and lifespan curves are not stable with
respect to the bottleneck distance. Applying Theorem 1 from [CL19] to both these curves does,
however, yield bounds on both these curves as computed in [CL19].

Theorem 1 ([CL19]). Let C and D be persistence diagrams, W∞ denote the bottleneck distance,
nC be the number of birth-death pairs in C and LC denote the sum of the lifespans of all birth-death
pairs in C. Then

||β(C, t)− β(D, t)||1 ≤ 2 max(nC , nD)W∞(C,D) + min(LC , LD)

||`(C, t)− `(D, t)||1 ≤ 2(LC + LD)W∞(C,D).

2.2. Data.

2.2.1. Horlings Dataset. The dataset used in this study is from [HLN+10], the same dataset used in
[DCCW+10], [ABC+15], [DCCW+10], [GUSA20]. It consists of BAC Microarrays from the genome
with an average spacing of 1 Mb. Each BAC clone was spotted in triplicate on each slide (Code
Link Activated Slides, Amersham Biosciences). It consists of 68 patient samples made from the 4
most common molecular subtypes of breast cancer: Luminal A, Luminal B, basal-like and HER2+.
There are 21 Luminal A samples, 12 Luminal B samples, 21 basal-like samples and 14 HER2+
samples. We consider each molecular subset separately as the test sets and the remaining patients
as the control set.

2.2.2. Simulation data. Simulated data sets contain 120 patient profiles with 60 patients in the
test set and 60 in the control set with both tests and controls containing 100 probes each. The
goal was to simulate patients that had single contiguous aberrations of a fixed length and compare
them to patients with no aberrations using multiple techniques. The control profiles were sampled
from a normal distribution with mean µ = 0 and standard deviation σ ∈ {0.2, 0.5}. The test
profiles had contiguous aberrations of length λ ∈ {2, 3, 5, 10, 20, 50, 75} sampled from a normal
distribution with mean µ ∈ {−1, 0.6, 1} and standard deviation σ ∈ {0.2, 0.5}. The rest of each
test profile was sampled from a normal distribution with mean 0 and σ ∈ {0.2, 0.5} with the same
standard deviation as for the aberration in the test profile. For each combination of parameters 20
simulations were run.

2.3. Software. To explore the effects of varying the length, mean and standard deviation of the
simulated data on Betti and lifespan curves we built a Shiny application. This allows us to set
the values of these parameters and see the probe values, the sliding window point cloud and the
persistence curve built from a Vietoris-Rips cloud on that point cloud. It also allows us to see the
same for a simulated control patient. Two outputs from this app are included in Figures 2 and
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Figure 2. Simulated test and control patient profiles, associated sliding window
point clouds and β0 curves for σ = 0.2

Figure 3 with the same parameters other than standard deviation which is σ = 0.2 in the first
figure and σ = 0.5 in the second.

In Figure 2, with a smaller standard deviation, there are two clusters within the test point
cloud, one centered at (0, 0) and one centered at (1, 1). The control point cloud has just one
cluster centered around (0, 0). The β0 curves of the Vietoris-Rips complexes of these point clouds
identify this difference, the test curve remains above the control curve until there is one connected
component. When the standard deviation is increased to σ = .5, however, both the control and
test point cloud are similarly clustered. This leads to β0 curves that are much more difficult to
differentiate as pictured in Figure 3. In this case the test and control β0 curves oscillate between
the test or control having more connected components.

3. Bounds on Betti and Lifespan Curves

The main challenge in application of persistence curves, including Betti and lifespan curves,
comes from the fact that small perturbations in the initial point cloud can lead to large changes
in the curves [XATZ20]. The main result of this section is a bound on the L1 norm between two
Betti and or two lifespan curves built from finite and bounded point clouds with respect to the
bottleneck distance.

Consider the bounds on the L1 norm between two Betti curves or two lifespan curves from
Theorem 1. The bottleneck distance is already stable with respect to small perturbations in the
initial point clouds [CSEH07], so our bounds will be in terms of it. We need to find bounds on the
maximal number of birth-death pairs in a persistence diagram, as well as the maximal lifespan of
any birth-death pair.

First, we establish existence of bounds on these quantities under the given constraints for i-
dimensional persistent homology. Then we explicitly compute bounds in the case of 1-dimensional
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Figure 3. Simulated test and control patient profiles, associated sliding window
point clouds and β0 curves for σ = 0.5

persistent homology of the Vietoris-Rips complex. We also compute bounds in the case of 0-
dimensional persistent homology for both the Vietoris-Rips and Čech complex. The existence
results given here are for Vietoris-Rips and Čech complexes, but essentially the same arguments
work for the various forms of witness complexes described in [Car09]. They also hold for the alpha
complex since it is homotopy equivalent to the Čech complex.

Proposition 1. Let P ⊆ Rn be a finite point cloud, then there exists a bound on the maximal
number of birth-death pairs in the persistence diagrams of VR(P, ε) and Č(V, ε).

Proof. Since P is finite, there are a finite number of simplicial complexes that can be built on P .
Both the VR and Čech filtrations change a finite number of times, hence the persistence diagrams
from these complexes have a maximal number of generators. �

Remark 1. Recall we consider reduced 0-dimensional persistent homology to avoid the issue of an
infinite lifespan generator.

Proposition 2. Let P ⊆ Rn be a finite point cloud with diameter d, then the maximal lifespan of
a birth-death pair from the i-dimensional persistence diagram of VR(P, ε) or Č(P, ε) is d.

Proof. Let P = {p1, . . . , pk} be a finite point cloud in Rn. Consider the epsilon balls B(p, ε) for
p ∈ P and ε > d. Since the diameter of P is d, each of these balls must contain all other points

in P . Therefore, B(pi, ε) ∩ B(pj , ε) 6= ∅ and
⋂k
i=1B(pi, ε) 6= ∅ so both VR(P, ε) and Č(P, ε) are

(k − 1)-simplices. Since simplices are contractible, there is no i-dimensional persistent homology
for i ≥ 1 and therefore the maximal lifespan is bounded above by m. In the 0-dimensional case we
consider reduced homology. �

Theorem 2. Let P ⊆ Rn be a finite point cloud with diameter d, then the i-dimensional Betti and
lifespan curves of VR(P, ε) and Č(P, ε) are bounded with respect to small perturbations of P .
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Proof. Combine Theorem 1 with Proposition 1 and Proposition 2. �

Next results provides explicit bounds on the maximal number of non-homologous generators of
1-dimensional persistent homology in a Vietoris-Rips filtration. To do this, we require that the
given point clouds have pairwise distinct distances between points. The following two results were
made available to the authors through private correspondence with David Moon [MHBO]. The
proofs provided here are different than those provided to the authors.

Proposition 3. Let G = (V,E) be a simple graph on n nodes, then the maximal 1st Betti number
of the clique complex of G, X(G), is

⌊
n
2

⌋ ⌈
n
2

⌉
− (n− 1).

Proof. The first Betti number of G is β1(G) = |E| − n+ 1. Subtracting the number of triangles T
in G from this quantity yields β1(X(G)) = |E| − n+ 1− T . Let G1 be a graph containing at least
one triangle. Remove an edge from a triangle in G1 to obtain G2. G2 has at least one less triangle
than G1, but only one less edge so β1(X(G2)) ≥ β1(X(G1)). The graph G for which β1(X(G))
is maximized must therefore be triangle-free. By Mantel’s theorem [AZHE10], the triangle-free
graph with the maximal number of edges is the complete bipartite graph Kbn2 c,dn2 e. This graph

has
⌊
n
2

⌋ ⌈
n
2

⌉
edges which completes the proof.

�

Proposition 4. Let P ⊆ Rd be a finite point cloud with n vertices such that the pairwise distances
between points are distinct. Then the maximal number of birth-death pairs in the 1-dimensional
persistence diagram of VR(P, ε) is

⌊
n
2

⌋ ⌈
n
2

⌉
− (n− 1).

Proof. The information from a VR filtration can be encoded by a sequence of graphs such that
Gi ⊆ Gi+1. Since the distances between points in P are pairwise distinct, Gi differs from Gi+1 by a
single edge. If adding an edge e = 12 to Gi to form Gi+1 completes a triangle 123, then e does not
birth a new cycle in H1(X(Gi+1)). To see this note that if e completes a cycle say a1, . . . , ak, 1, 2
then this cycle is homologous to a1, . . . , ak, 1, 3, 2 in X(Gi+1) since the two cycles differ by the
triangle 123. Since the edges 13 and 32 were in Gi the cycle represented by a1, . . . , ak, 1, 3, 2 was
already in H1(X(Gi)) and hence e did not birth a new cycle. Since triangles do not birth new
cycles, any VR filtration which has the maximum number of birth-death pairs in a persistence
diagram can have all generators alive at once. Therefore the maximum number of birth-death pairs
over the entire filtration is the same as the maximum number of cycles that can be alive at a fixed
filtration parameter. Proposition 3 completes the proof. �

Remark 2. Proposition 4 improves a special case of Theorem 3.1 from [Gof11] for n < 24, which
says that the maximal 1st Betti number of a Vietoris-Rips complex at a fixed filtration value is 5n.

The point clouds considered in this work have a maximum diameter. In particular, if the minimal
and maximal copy number ratios are cmin and cmax then all sliding window point clouds are con-
tained in [cmin, cmax]2. Therefore, the maximum diameter of these point clouds is

√
2 (cmax − cmin).

Theorem 3. Let P and P ′ be sliding window point clouds built from copy-number ratio data with
window sizes 2. Let P and P ′ each consist of n points. Let C and D be the 1-dimensional persistence
diagrams coming from the Vietoris-Rips filtration built on P and P ′. Then

||β1(C, t)− β1(D, t)||1 ≤
(⌊n

2

⌋ ⌈n
2

⌉
− (n− 1)

)(
2W∞(C,D) +

√
2 (cmax − cmin)

)
||`1(C, t)− `1(D, t)||1 ≤ 4

(⌊n
2

⌋ ⌈n
2

⌉
− (n− 1)

)(√
2 (cmax − cmin)

)
W∞(C,D).

In the 0-dimensional case for both the Vietoris-Rips and Čech filtrations it is clear that the
maximal number of connected components in a point cloud with n vertices is n. This yields the
following explicit bounds for β0 and `0 curves in the case of copy-number ratio point clouds.
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Theorem 4. Let P and P ′ be sliding window point clouds built from copy-number ratio data with
window sizes 2. Let P and P ′ each consist of n points. Let C and D be the 0-dimensional persistence
diagrams coming from either Vietoris-Rips or Čech filtrations built on P and P ′. Then

||β0(C, t)− β0(D, t)||1 ≤ n
(

2W∞(C,D) +
√

2(cmax − cmin)
)

||`0(C, t)− `0(D, t)||1 ≤ 4n
(√

2 (cmax − cmin)
)
W∞(C,D).

The bounds from Theorem 4 apply to persistence diagrams that come from a single test patient
and a single control patient. In the TAaCGH pipeline the curves from all of the test patients are
averaged together, then the curves from all of the control patients are averaged together and finally
these average curves are compared. Since a mean cannot be defined on persistence diagrams, this
bound cannot be extended to a bound on average persistence curves.

4. TDA tools for classifying breast cancer types

In [ABC+15], the copy number data from the chromosome arm of each patient is split up into
consecutive segments of length 20 probes each. Each segment overlaps with the next segment in
10 probes. Next the Horlings data set is split into a test and control set. The process tests for
significance at each individual segment. The test set consists of all patients from one cancer subtype
and the control set consists of all other patients. The data for a fixed segment is converted into a
point cloud in R2 using the sliding window mapping for each patient. A Vietoris-Rips complex is
built on each point cloud and the 0-dimensional persistent homology of each Vietoris-Rips complex
is taken. The persistent homology is then summarized into a Betti-0 curve for each patient. Next
the Betti curves from all patients in the test set are averaged together and similarly for the control
set. The L2 norm of the difference between the average test and control betti curves is used as
the test statistic. Permutation testing with FDR correction for multiple testing is used to test the
significance of the statistic and thus of each segment for each cancer subtype. In this study we
explore the significant regions of the genome that the 0 and 1-dimensional lifespan curves, `0 and
`1, detect. We compare these regions to the regions detected by β0. We also compare 0-dimensional
persistence landscape functions to β0.

4.1. Building and Validating New Software. Since jPlex [SVJ11] is no longer updated, we
built new software for the TAaCGH process in R. In order to validate the code, we recreated
the study from [ABC+15] with β0 curves. We consider the significant regions that were detected
before removing any outlier patients or altering the control sets. The regions that were detected by
[ABC+15] under these conditions for each of the cancer subtypes, as well as the regions detected
when this experiment was performed again, are contained in Table 1.

For Luminal A, and HER2+ the regions detected before were all detected again. In the case
of Luminal B one new region was detected 8p3. In the case of Basal, most of the same regions
were detected except 3p3, 3p6, 4q3, 5p2 − 3 and 9q2. Two regions that were not detected before
were also detected this time 2p4 and 14q1. The undetected regions are shown in blue and the
newly detected regions are shown in red in Table 1. These minor differences between the detected
significant regions are likely due to rounding differences in jPlex to the R TDA library and the fact
that many of the differing regions had p-values close to .05 in the original study.

4.2. Lifespan Curves. Lifespan curves can be thought of as a weighted version of Betti curves,
where each generator at a particular filtration value is weighted by its lifespan. These curves
have a smaller bound on the L1 norm between them and they also have the potential to discover
different significant regions because they take into account different topological information than
Betti curves. For these reasons, the experiment from [ABC+15] was repeated using lifespan curves
on 0-dimensional persistent homology, instead of Betti curves. The significant regions that were
detected using this method are in Table 2.
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Lum. A Lum. B HER2+ Basal

β0 Old 11q6 17q1− 2, 17q3, 17q4

1p1− 7, 1p10− 11, 1q2, 2p7, 3p1− 2,
3p3, 3p6, 3p7− 8, 4p3, 4q3, 4q4− 12, 5p1,
5p2− 3, 5q1, 6p1− 2, 6p4, 6q8− 9, 7p2,
9p1, 9p2, 9q2− 3, 9q7− 8, 10p1− 3, 10q1− 2,
10q4− 8, 12p1− 2, 13q2− 6, 13q8, 14q2,
14q7− 8, 15q1− 3, 15q6, 18q1− 4, 23p1− 3

β0 New ∗ 8p3 ∗ ∗, 2p4, 3p3, 3p6 4q3, 5p2− 3, 9p2, 14q1

Table 1. Comparison of the original β0 study [ABC+15] on the Horlings data
[HLN+10] and the reproduced β0 study. Red indicates a newly detected region, blue
indicates undetected regions and * indicates the remaining regions from [ABC+15]
that were detected.

Luminal A Luminal B HER2+ Basal

Lifespan-0 1p1, 2q2, 5p3, 15q 17q1− 4

1p1, 1p6, 2p4, 2p7, 3p1, 4p3,
4q4, 4q6− 11, 6p4,
10p1− 3, 10q5− 6
12p2, 13q5− 6, 15q2− 3
23p1− 2

Table 2. Significant regions detected by `0, the 0-dimensional lifespan curve. Red
indicates the segments that were not detected in [ABC+15].

The lifespan curve `0 detected all the regions for HER2+ patients, 17q1−4, that were previously
detected in [ABC+15]. It detected 4 new regions for luminal A patients and it detected some of
the segments that were detected for basal in [ABC+15], as well as one new segment, 2p4. It did
not detect any significant regions for Luminal B. The experiment was also repeated for dimension
1 persistent homology using lifespan curves. The results are in Table 3. In this case, no significant
regions were detected for Luminal A or B, only one region, 17q2, was detected for HER2+ and 9
regions were detected for basal. These regions are 1p2, 1p11, 4q4, 4q7, 5p3, 6p4, 10p1, 10q6 and 13q3.
All of these regions were previously detected in [ABC+15].

Overall, lifespan curves detect significantly fewer regions than β0 curves, though `0 curves detect
more regions for Luminal A than β0 curves do. This indicates that the number of generators
on average between Luminal A patients and control patients is similar, but the lifespan of these
generators differs. Since no regions were detected for Luminal B by β0, `0, or `1, this indicates that
similar persistence curves are unlikely to detect significant regions for Luminal B. The `1 curve
only detects regions which were previously discovered by β0 in [ABC+15], so in this case offers no
additional information.

Luminal A Luminal B HER2+ Basal
Lifespan-1 17q2 1p2, 1p11, 4q4, 4q7, 5p3, 6p4, 10p1, 10q6, 13q3

Table 3. Significant regions from the Horlings dataset [HLN+10] detected by `1,
the 1-dimensional lifespan curve.

4.3. Persistence Landscapes. Recall that, as opposed to Betti and lifespan curves, persistence
landscapes are stable [Bub15]. Persistence landscapes also have the added advantage of there being
multiple landscape functions that can be applied to a single dimension of persistent homology. We
therefore repeat the experiment from [ABC+15] using landscape functions instead of β0 curves.
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In the TAaCGH approach the copy-number data from the chromosomes of patients is split up
into contiguous segments of 20 probes each. The data from these 20 probe segments is then used to
detect the significance of these segments, as reviewed in Section 4. In [ATGB+16], Betti-1 curves
are used to attempt to detect the significance of the 17q chromosome arm. We also consider entire
chromosome arms using persistent landscapes to compare the effects of the size of the point clouds
on detecting significant regions.

4.3.1. TAaCGH with Persistence Landscapes Applied to Chromosome Arm Segments. Recall from
Section 2.1.4 that there are multiple persistent landscape functions, one for each natural number.
The first persistent landscape on 0-dimensional homology will never detect a significant difference.
Let k be the maximal filtration parameter considered. Then when t < k/2, the 0th persistence
landscape function is the identity t and when t > k/2, it is k−t. For this reason, the first persistence
landscape function is not considered. We use the 2nd, 3rd and 4th persistent landscape functions
were used in a repeat of the experiment from [ABC+15]. More persistent landscape functions were
not considered because of the small size of the point clouds.

Significant regions in Table 4 were identified for each of the 4 cancer subtypes in the Horlings
dataset. The landscape functions λ1 and λ2 detect significant regions for the Luminal A subtype,

Luminal A Luminal B HER2+ Basal
λ2 5p3 17q1− 2
λ3 2q2, 5p3, 11q6 17q1− 3

λ4 17q1− 3
1p7, 1q1, 2p7, 3p1, 4p3, 4q6− 7,
4q10− 11, 5p1, 10p1, 10p3, 10q5− 6,
12p2, 13q2, 13q8, 14q8, 23p1, 23q7

Table 4. Significant regions detected by persistent landscape functions on 0-
dimensional homology. Red indicates the segments that we have detected that were
not detected in [ABC+15].

but no significant regions for the Basal subtype. This indicates that the topological differences
between the Luminal A patients and the rest are governed b-y larger length generators, whereas the
difference between basal and the other subtypes are governed by smaller generators. No significant
regions were detected by λ2, λ3, or λ4 for Luminal B. This is the same as for `0 and the original
β0 indicating that 0-dimensional homology is unlikely to detect differences between Luminal B and
the other subtypes.

The study was also repeated on dimension 1 persistent homology using the first persistent land-
scape function. The results are in Table 5. As opposed to 0-dimensional persistent landscape

Luminal A Luminal B HER2+ Basal

λ1 1q4, 2q11, 8q1
1p2, 1p11, 4q4, 4q7, 5p3, 6p4, 7q7
10p1, 10q1, 10q6, 13q3

Table 5. Significant arms in Horlings data [HLN+10] detected by the first persis-
tent landscape function on 1d persistent homology. Red indicates the segments were
not detected in [ABC+15].

functions, λ1 on 1-d persistent homology did detect significant regions for Luminal B. It also de-
tected significant regions for the basal subtype, most of which were initially detected by β0 in
[ABC+15]. The only significant region for the basal subtype that was not detected previously is
7q7. On the other hand, λ1 does not detect any significant regions for Luminal A or HER2+. This
is similar to the results for HER2+ in [ATGB+16] using β1 curves, where only 17q2 and 17q3 were
detected as significant from the Horlings dataset.
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4.3.2. TAaCGH with Persistence Landscapes Applied to Chromosome Arms. In [ABC+15], each
chromosome arm was split into segments and the data from each segment was then used to detect
significant segments. In this section we apply this approach combined with persistent landscape
functions on the data from entire chromosome arms to detect significant arms. In this case we are
applying the sliding window algorithm to longer sequences and therefore we obtain larger point
clouds. The results are contained in Table 6. Table 6 shows that there is a very strong signal for

Luminal A Luminal B HER2+ Basal
λ2 17q
λ3 8p 17q
λ4 8p 17q 10p, 13q

Table 6. Significant arms detected by persistent landscape functions.

the 17q arm. The second, third and fourth persistent landscape functions all detect it. For Luminal
B the arm 8p is also detected by the third and fourth landscape functions. Significant arms 10p
and 13q are both detected by λ4 for basal. This is similar to the results on segments where only
λ4 detected significant segments for basal.

5. Comparing Betti Curves, Lifespan Curves and Persistence Landscapes on
Simulated Data

Using the simulated data described in Section 2.2.2 that models test patients with a single
contiguous chromosome aberration and control patients without one, we compare the ability of β0, `0
and persistence landscapes to detect segments significant to patients. This is done by comparing
the sensitivity of the three methods as the mean µ ∈ {−1, 0.6, 1}, standard deviation σ ∈ {0.2, 0.5}
and length λ ∈ {2, 3, 5, 10, 20, 50, 75} of the aberration varies. The sensitivities of `0 curves on the
simulation data is in Table 7. The sensitivities of λ2, the second persistent landscape function, on
the simulation data is in Table 8. The sensitivities of λ3 and λ4, the third and fourth persistent
landscape functions, on the simulation data is in Table 9. The sensitivity for β0 curves on simulated

Mean Stdd Len Sensitivity
-1, 1 0.2 2 0.95
-1, 1 0.2 3, 5, 10, 20, 50, 75 1
-1 0.5 2 0
-1 0.5 3 0.35
-1,1 0.5 5, 10, 20, 50, 75 1
0.6 0.2 2 0.15
0.6 0.2 3, 5, 10, 20, 50 , 75 1
0.6 0.5 2, 3 0
0.6 0.5 5 0.1
0.6 0.5 10 0.65
0.6 0.5 20 0.75
0.6 0.5 50 0.95
0.6 0.5 75 0.8
1 0.5 2 0.05
1 0.5 3 0.55

Table 7. Sensitivity of `0 curves for varying means, standard deviations and lengths
of simulation. data
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Mean Stdd Len Sensitivity
-1 0.2 2, 3, 5, 10, 20, 50, 75 0
-1 0.2 2, 3, 5 0
-1 0.2 10 0.05
-1 0.2 20, 50, 75 0
0.6 0.2, 0.5 2, 3, 5, 10, 20, 50, 75 0
1 0.2 2, 3, 5, 10, 20, 50, 75 0
1 0.5 2, 3, 5, 10, 20, 50 0
1 0.5 75 0.05

Table 8. Sensitivity of λ2 curves for varying means, standard deviations and
lengths of simulation data.

Mean Stdd Len Sensitivity
-1, 0.6, 1 0.2, 0.5 2, 3, 5, 10, 20, 50, 75 0

Table 9. Sensitivity of λ3 and λ4 curves for varying means, standard deviations
and lengths of simulation data.

Mean Stdd Len Sensitivity
-1, 0.6, 1 0.5 20, 50, 75 1
-1, 1 0.5 10 1
0.6 0.5 10 0.95
-1, 1 0.5 5 1
0.6 0.5 5 0.55
-1 0.5 3 0.90
1 0.5 3 0.95
0.6 0.5 3 0.15
-1 0.5 2 0.50
1 0.5 2 0.56
0.6 0.5 2 0.18

Table 10. Sensitivity of β0 curves for varying means, lengths of simulation data
from [ABC+15].

data with µ ∈ {−1, 0.6, 1}, σ = 0.5 and λ ∈ {2, 3, 5, 10, 20, 50, 75} was previously studied in
[ABC+15]and the results are in Table 10.

5.1. Simulations. In the simulations run in [ABC+15], the standard deviation was fixed at σ = 0.5
while the mean and length of the aberration in the test patients was allowed to vary. When the
mean was −1 or 1 Betti-0 curves performed very well, achieving a sensitivity of 90% or more as
long as the length of the aberration λ satisfied λ ≥ 3. Even when the mean of the aberration was
0.5, the sensitivity of Betti-0 curves was 95% or more when λ ≥ 10.

Lifespan-0 curves perform similarly to Betti curves on the simulated data. When the mean of the
aberration is 1 or −1 then lifespan curves achieve sensitivity of 100% when λ ≥ 3 and σ = 0.2. The
lifespan curves also achieve 95% sensitivity when the mean is ±1 and λ = 2. When the standard
deviation is increased to σ = 0.5, but the mean is ±1, lifespan curves achieve 100% specificity when
λ ≥ 5. When the mean µ = 0.6 and the standard deviation σ = 0.5, lifespan curves do not perform
as well as Betti-0 curves, not even achieving 100% specificity when λ = 75.
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Persistence landscapes perform very poorly overall on the simulations. Even for long aberrations
with little noise, the best sensitivity that any persistence landscape function achieves is 5%. This
indicates that persistent landscape functions are likely to detect far less significant regions than
Betti or lifespan curves.

Overall, the simulations indicate that Betti curves and lifespan curves will identify similar
amounts of significant regions when noise is low and the mean of the aberration is far from 0.
When the mean is closer to 0 and the noise increases, then Betti curves will outperform lifespan
curves. Landscapes perform far worse than either lifespan curves or Betti curves under all variations
in parameters. JA: This is not surprising since the bounds on the distance between Betti curves are
larger than the bounds on the distance between lifespan curves. Landscape functions are known to
be stable in general, so the bounds on the distance between landscape functions are even smaller.
A larger distance between curves increases the potential to find statistical significance.

6. Discussion

When lifespan curves were applied to the Horlings dataset they performed similarly to how they
performed in the simulations. They identified less regions overall than β0 in [ABC+15], particularly
for the basal phenotype. Most of the regions that were detected were detected in the original β0
study. There were 5 segments, that `0 detected that β0 did not detect. Four of these segments
were from the Luminal A phenotype. This confirms the fact that the lifespan curves can contain
potentially different information from Betti curves.

Lifespan curves in dimension 1, `1, did not detect any significant segments for Luminal A nor
Luminal B, but they did detect 17q2 and nine segments for Basal. All of these segments were
previously detected in the [ABC+15] study using β0. This indicates that, at least with this type of
data, `1 may not contain any more information than 0-dimensional Betti curves.

When persistence landscape functions were applied to the Horlings data set, the significant
regions discovered by them varied quite a bit between λ2, λ3 and λ4. The significant regions detected
by λ2 and λ3 were similar except that λ3 detected 2q2 and 11q6 for Luminal A. The fouth persistent
landscape function λ4 did not detect anything for Luminal A, but detected many significant regions
for the basal phenotype. Neither the first nor second persistent landscape functions detected
anything for Basal.

In simulations, `0 curves perform very similarly to β0 curves. Both have very high sensitivity
when the standard deviation is low and the mean µ of the aberrations is far from 0. When the
standard deviation is high, the length of the aberration has to be greater in order for `0 curves to
have a high sensitivity. In simulations landscape curves performed the worst of the three types of
curves. The second, third and fourth persistent landscape functions were only able to achieve 5%
sensitivity at beast. This only occurred when the length of the aberration was long and the mean
was far from 0. Overall, the simulations indicate that landscape functions will be far less effective
at detecting single aberrations, regardless of length, mean and standard deviation.
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